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Theory and Measurements of the Distribution of
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Abstract:The distribution of rainfall in space and time is well known to be both variabie and scale
dependent. Models based on scale invariance have been shown to provide parsimonious descriptors of the
distribution of rainfall over a wide range of scales in both time and space. This paper will present some of the
methods that are used to describe the scaling behaviour of rainfall and examples of the analysis of Austraiian
radar rainfall data will be presented to demonstrate the scaling nature of rainfall. The scaling nature of
rainfall affects both the ability to forecast rainfall and the selection of stochastic methods to generate
plausible fields of rainfall. Examples of methods that exploit the space and time scaling of rainfall to
produce short duration rainfall forecasts and stochastic simulations will be presented,
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1. INTRODUCTION

Rainfall is the result of complex atmospheric
phenomena, and therefore is itseif complex
displaying both variability and intermittency over
a wide range of scales. The statistical properties
of rainfall in space and time are highly dependent
on the scale of the accumulation or average,

generate plausible random fields, and to produce
conditional simulations will be discussed and
conclusions will be drawn. This paper is not an
encyclopaedic treatment of the subject, but rather
an introduction to scaling analysis and the
presentation of some models that the author has
tound useful,
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to study” {Foufoula-Georgiou, 1996]. In general,
there are two generic types of rainfall models viz.
those based on clustered point process models
usiag the notion of tain cells [Cox and Tsham,
1996] and those based on treating the rain field as

rainfall provide “astractive and parsimonious”

[Foufoula-Georgiou, 1996] representations that
are able t0 generate rain fields that are able to
reproduce the observed relationship between the
statistics of precipitation amounts at different
spatial and temporal scales. While some argue
that rain fields (or more accuraiely the
fluctuations of rain) are multifractal in a
fundamental sense e.g. Lovejoy and Scherizer
[1995], it is sufficient to note that they are able to
reproduce a reascnable approximation of key
observed statistical characteristics over the range
of scales usually found in hydrology, and are
therefore useful in modelling and simulating rain
fields for hydrological applications. This paper
will start with a very short outline of the theory
that underpins the analytical methods but will
include useful references to more detailed
treatments. Thereafter, the use of scaling models
to characterise the statistical nature of rainfail, 1o

A random field will display scaling characteristics
if and only if the power spectrum P(f) obeys the
power law

P(f)e f77 s}

The scaling can be characierised by spectra of

—gxponents; the spectra-for-the scaling-of-the

moments, A{p), defined as
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where Ff (x) denotes the average of the field

over the interval [ centred at x, and < > denotes
ensembie average, and the spectra for the scaling
of the generalised structure function, (g}, defined

as
(FG+D-FGL )@ )

Scaling can also be expressed in terms of the
scaling of the probability distributions for the
field averaged over scales /

Pr(F 217y =1 (4
where ¢y is the spectrum of scaling exponents
for the probability distribution, and = represents
equality {0 within slowly varying functions of /



[Lovejoy and Schertzer, 1995]. The exceedence
probabilities of maltifractals have asymptotically
hyperbolic tails so that Pr{R>rjec i
[Mandelbrot, 1974]. Here g, is a critical
exponent indicating the moment beyond which
moments are divergent and K(g) becomes a
straight line [Harris et al., 1996].

It can be shown fields are muitiscaling as defined
by equation (2) if the siope of the power
spectrum, /, is less than D, the dimension of the
support {3 = 1 for time series, 2 for spatial fields).
Tn the case for 8> D, the scaling is characterised
through the generalised structare function defined
by equation (3) and i3 said to be multiaffine,
When a field with > D undergoses a small scale
absolute gradient transformation the resulting AF
field will be multiscaling with a power spectrum
B<D.

Estimation of K{g) simply involves finding the
g™ moment of the field at the smallest scale and
then averaging the field over successively larger
scales. The K(g) curve is only defined over a
finite range of uniform scaling and care must be
taken to verify that the field does in fact scale
over a useful range. The analytical form for K(g)
can be derived theoretically for specific cascade

disaggregation of rainfall events. Rainfall records
are also prone o measwrement errors and
instrumentation artefacts, and great care needs to
be taken to eliminate as much corrupt data as
possible prior to analysis. This is particularly true
when using radar rainfail data to investigate the
scaling of the moments or the probability
distribution. A review of the impact of
measuremen!  noise and non-stationarity  on
scaling rechnigues is given by Harrig et al. [1998].
Most of the theory and models for scaling
invariance are based on the random multiplicative
cascades, which arose in the theory of turbulence.
The random multiplicative cascade can be
construcied as a discrete cascade e.g. Over and
Gupta [1996], Menabde [I1998], or as a
continuous  cascade  e.g.  the  Universal
Multifractals of Lovejoy and Schertzer [1995)]
An alternative approach is to use the wavelet
decomposition e.g. Perica and Foufoula-Georgiou
[1996]. Substantial reviews of the models and
related theory can be found in Lovejoy and
Schertzer [1993] and Foufoula-Georgiou [ 1996].

A discrete random cascade is constructed as
follows: At an arbitrary #™ step in the process. a

square of size [ = L2 with mean areal rainfall

F, is divided into four equal squares, each with

constructions  e.g. Universal Multifractals of

Lovejoy and Schertzer [1995]. or the Bounded size 1,/2 and vaiue F,  =W{()F where the

f.ognormal Cascades of Menabde [1998] The W(i) are random numbers drawn from some
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a convenient framework for the characterisation
of highly non-linear fields over a wide range of
scales by means of a small number of parameters.
For example, €, the derivative of K{g) at g = 1,
is a measure of the intermittency of the field (the

F3
the constraint that EW(I') =1, then the cascade
=1
is sald 1o be microcanonical and the resulting field
will have simple scaling characteristics.

-codimension. of the set of points that are greater

than the mean). IT C; is close to zero the field
behaves as a field of white or 1/f noise which fills
the embedding space, whereas if C) is close to D
then the field is intermittent and the flux is
concentrated on a small fraction of the area.

A major problem with verification of a
multifractal or multiaffine behaviour in rainfall
data sets using equations {2} or (3) is that the
analysis requires long sequences of statistically
homogeneous rainfall data. Long sequences of
rainfall data may not be scaling over the entire
perind and usually include sequences from several
different  rainfall  processes, each  with
sigmificantly  different statistical and scaling
properties. Fabry {1996] found that 2 time series
of rainfall intensities from the Monireal area did
not show a scaling power spectrum at scales that
were greater than 5 days, and therefore scaling
models are  essentially models for the
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A less restrictive condition is to set the mean of

the generator equal to i, the cascade is said to be
canonical and resulting field will be multiscaling
if the weights are independent and identically
distributed for all’ levels of the cascade, or

multiaffine if' the width of the generator is
reduced with scale according to a power law
[Menabde, 19981 A schematic of the
construction of  a selfsimilar  discrete

multiplicative cascade taken from Lovejoy and:
Schertzer [1995] is shown in Figure 1.

3. MULTIFRACTAL
CHARACTERISATION OF RAIN
FIELDS

Harris et al. [1996] wed A ¢ and ¢, ©

characterise the statistical nature of precipitation

as a function of location in a mountain range. A

astwork of rain gauges with [3-second resolution

was installed on the west coast of the Seuth Island



of New Zealand.  The analysis showed a
systematic trend of decreasing intermittency aned
extreme values with increasing altitude (or
proximity to the crest of the mountain}. For
example, £ decreased from a value of 1.5 at the
coast to 0.95 at the main divide pointing to a
relative reduction in the power of low frequency
structures at the main divide. ), the measure of
intermittency, decreased from the coast to the
main divide as did g,,, a measure of the width of
the distribution. Nagata [2001} used Fand C, to
classify fields of hourly ranfall accumulations
into “widespread” and  “convective” rainfall
classes. Characterisations of this type are
interesting since they quantify the statistical
differences that exist between rain fields that have
different meteorological origins.
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Assuming the EV1 distribution for the annual
maximum series, the IDF relation was found to be

i=[u-ologllogl - YT/ d"

wherze [ is the mean rainfall intensity with
duration o hours and annual recurrence interval T
YEUrs.

{3)

The 4 and @ parameters of the EV] distribution
fitted to the annual maximum series for rainfall
durations of 30 minutes up to 24 hours were
found to follow a simple power law (d/Djr .
where 77 depends only on the climate. It is
possible to use 2 long sequence of daily data 1o
calculate w4 and o, and a shorter sequence of high
time resolution data in the climatic region t©
estimate 77 since the intensities of events with the
same annual recurrence interval but different
durations will scale with the same exponent 7.

5. MODELLING RAINFALL IN SPACE
AND TIME

Theories of space-time rainfall based on scaling
ideas have only recently emerged (e.g. Bell
[1987], Over and Gupta [1996], Marsan et al
[1996], Seed et al. [1999], Pegram and Clothier
[20011). A general feature of atmospheric
turbulence is that for a feature with a given size [,
there is a typical lifetime or correlation iength

Figure 1. A schematic
discrete  multiplicative  cascade,
Lovejoy and Schertzer [1993].

taken from

4, INTENSITY-DURATION-FREQUENCY
RELATIONSHIPS

The relationship between rainfall intensity,
duration, and frequency (IDFy has been of
considerable interest to engineers for over a
century, and a large number of empirical
relationships have been proposed over the years.
The scaling hypothesis offers a  consistent
framework for an  analysis of the [DF
characteristics for extreme rainfall. Burlando and
Raosso [1996] were pioneers in applying a scaling
model to an annual maximum series of rainfali
depths over a range of accumulations, Menabde et
al. [1999] applied the simple scaling hypothesis to
mode! the cumulative distribution function for the
annual maximum series of rainfall intensity.

of the construction of a

~[Sehertzer etal., 997}~ This complicates space:
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21 B
7,0 [Marsan et al., Y6, leading G

anisotropic scaling in space and time. This space-
time model is quite different to the usual
meteorological phenomenclogy, - which assumes
that there is a hierarchy of qualitatively differemt
dynamical mechanisms that depend on scale
time models since the scaling in space is different
from that in time and this anisotropy is difficult to
guantify since it must be estimated in Lagrangian
rather than Eulerian coordinates.

A further complication arises from the fact that
cascade models are essentially event-based
models since rainfall iypically does not scale
convincingly beyond a couple of days. The
Pegram and Clothier [2001] model first models
the arrival and duration of the events as an
alternating  renewal  process  and  then
disaggregates each event into a sequence of rain
fields. The disaggregation is done by using an
anisotropic power law spectral filter on a cube of
Gaussian  noise o achieve  the  observed
correlations in  space and time, and then
exponentinting 1o obtain a tHme series of
correlated lognormal fields. The time series of
mean areal rainfall over the entire fiald s



modelled by first generating a time series of the
wetted area ratio based on an AR(6) model, and
then using a derived relationship between the
mean and the wetted area ratio to estimate the
mean and variance of the field at a particuiar time
step. Each field in the time series of the event is
then renormalized so as to produce the correct
field mean and variance.

The Seed et al. [1999] model "Motivate” is an
event model that is intended to be used (o
generate plausible realisations of a design storm,
The model consists of three components viz. a
broken line model [Seed et al, 2000] to generate
the time series of mean areal rainfall, a model
based on & bounded log-normal cascade 1o
generate the spatial pattern, and an AR(2) model
for the temporal evolution of the cascade weights,

The model has been used to generate plausible
Z4-hour | m 5 vear ARI design storms for the
Melbourne area [Seed et al. 2001a]. Melbourne
Water is required by the EPA to progressively
upgrade their sewerage system so that is able to
contain the seepage into the system resulting from
a 1 in 5 year ARI storm. At present the design
storm hyetograph is generated using the standard
Australian Rainfall and Runoff {ARR) method of
first estimating the 1 in 5 year storm total using
rain gauge data, applying an areal reduction factor
to convert the point measurement into  an
equivaient areal measurement over the 1600 km®

advection wvelocity were estimated using radar
data.

The rain gauge record was used to identify events
that had an ARI that was ciose to 1 in 5 years. An
analysis of the synoptic situation for each event
was undertaken and the storms were classified
imto 6 classes. The radar data archive was
searched and significant storms for three of the
event classes were identified. The radar data were
used to estimate the speed and direction of the
field advection as well as the scaling exponents.
Two of the events couid be characterised as
widespread rainfall associated with rain bands
ahead {in a NW airstream) or behind a cold front
(in a S5W airstream), while the third was
convective rainfall embedded in a NE airsiream.
The scaling exponents were quite similar for the
first two cases, while rainfall associated with the
third event was more variable and intermittent.

§. PREDICTABILITY AND
FORECASTING RAIN FIELDS

The characterisation of a rain field as an ensemble
of structures of scales between the single pixel
and the outer scale of the field, characterised by
dynamic scaling where the life time of a structure
is a power law of it's scale, leads to an intuitive
picture of the predictability of a rain field as a
function of scale [Marsan 1996]. Since there is
ne information in the current image about a

satchmentand-then-distributing the storm-tetal-in
S-minute time steps using a standard temporal
patiern.  An infiltration model is then used to
predicted flows at critical locations for the design

S{OTm.

~'The major problems with this approach are firstly

that the rainfall pattern is uniform over the entire
network teading to very high estimates of pipe
flow, and secondly only one design storm
scenaric can be generated. The advantage of
using a space-time model to generate an ensemble
of design storms, each with the same mean and
duraiion, is that they can be used to evaluate the
variability in the hydrological response that arises
from the differences in the small scale details in
the rain field.

IMotivaie requires the gross statistics for the event
{(duration. mean iniensity, variance at the small
and large scale, and advection velocity) and
scaling descriptors that control the space and tirne
correlation structure of the field.  The mean
intensity for a given duration of the design storm
wag estimated using rain gauge records. The
scaling parameters, variance of the rain field, and
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strictire gferrpericd Tt s ionger i iy
lifetime, the optimal strategy is (0 smooth
siructures once their lifetime has been exceeded.

Dynamic scaling inplies that one needs o know
the field on increasingly large scales in order 10

~predict further-into.the future Figure 2 $hoWS 20

example of the lifetime {correlation length) of a
structure as a function of scale for two tropical
cyclones and an analysis of two cases of high-
resclution (100 m, 6 s) radar data from the
Physics Department, Auckland University, mobile
radar.

These ideas have been exploited by Seed [2001b]
io deveiop the Spectral Prognosis {S_PROG;
model, Rainfall is related to radar reflectivity
through a power law, so a multiplicative cascade
of raintali can be transformed into an additive
cascade of radar reflectivity in dBZ. The cascade
of random fields is calculated from a measured
field by using nowh fiters in the frequency
domain to disaggresate the ensemble of scales
that are present in the field into a hierarchy of
levels in & cascade that will then sum back into
the observed field. The mean advection of the



field is calculated by finding the displacement
between successive images that maximises the
correlation between the images.

00l -
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Figure 2. Dynamic scaling for t(wo tropical
cyclones (Darwin 97, Darwin 98) and two cases
using high-resolution radar data from New
Zealand (Auckland, Matawai}.

The temporal development of each level in the
cascade is modelled using an AR(2) model for
each level in the cascade. The parameters for the
hierarchy of AR(2) models are calculated at each
time step by using the most recent estimates of the
Lagrangian lag 1 and 2 auto correlations to solve
the Yule-Walker equations, applying heuristic
rules to maintain stationarity. This has the effect
of making the modei quite adaptive and generic,
learning the characteristics of each rainfall event
as it unfolds,

Z3DEC1INH1331.00

Figure 4. 30-minute forecast using S_PROG

7. FUTURE ISSUES AND PROBLEMS

All current analysis methods require very large
samples of data. Problems arise therefore from
non-stationarity in the data and contamination
with measurement noise. The lack of robust
methods to evaluate either the scaling of the
moments or the generalised structure function for
rainfail is a major problem that requires further
research.

The moment scaling methods of double trace
moments by Lovejoy and Schertzer [1995] are
attractive in that they rely on successive averaging
over larger spatial scales, thereby reducing the
impact of small-scale noise, but have unsolved
issues regarding the treatment of the zero values.
The generalised structure function is difficult to
estimate, particularly for high moments, and this
sampling variability needs tc be understood in

The forecast fields are then generated by using the
hierarchy of AR(2) models {with out the noise if a
singie forecast-is-required;-or with-the noise term
if conditional simulations are required) 1o predict
the future staie of the cascade, and advecting the
fields are then remormalised s0 as to maintain the
observed conditional mean rain rate and raining
area, and are converied from radar reflectivity
into rainfall intensity in the usual manner and
with the usual problems. Examples of the model
output are shown in Figures 3 and 4.

25DECTHE 1331 1D

Figure 3. |0-minute forecast using S_PROG

—All-current-models -assume--that thescaling 15
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order To assess the significamce i thedifferemne
between two structure Tunctions. Very litile work
has been done to exploit the c{y specira of
exponents for the scaling of the probability
distributions,

homogeneous in both space and time during an
event. This is most unlikely to be the case but
very little work has been done on either
quantifying the variability of the scaling
descriptors in space and time, or relating them 1o
meteorology. and no work has been published on
models that can generate spatially inhomogensous
scaling fields of rainfall,  Models based on
wavelets are very aftractive in this regard as the
wavelets, unlike the Fourier methods, are located
in space and therefore could be more easily
adapted t¢ spatiaily non-homogeneous scaling
rodels.

The spatial organisation of rainfall accumulations
on the ground is dependent on both the nature of
the instantaneous rain field and the velocity with
which the field is advected over the area. To
some extent, the accuracy of small-scale
precipitation  forecasts  is  limited by the
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predictability of the advection field at small-
scales.  The variability of field advection both
during an event and from one event to the next
has yet to receive adequate attention, and the
predictability of the advection vector as a function
of scale has vet to receive any attention.

Scaling models of rainfall are able to provide
poweriui representations of rain fields in both
space and time. These models are generally
parsimonious and robust, capturing many of the
features in rainfall that are important to
hydrology. The theory is still very young and
therefore a standardized argot has yet to emerge
making it ditficult to relate the research {rom one
group 1o that from another. While the jury is stll
out on the guestion of whether rain flelds are
multifractal in a fundamental sense, multifractal
models are stili useful representations of the
measurements  and  worthy  of  further
development.
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